Inter-subject neural code converter for visual image representation
نویسندگان
چکیده
Brain activity patterns differ from person to person, even for an identical stimulus. In functional brain mapping studies, it is important to align brain activity patterns between subjects for group statistical analyses. While anatomical templates are widely used for inter-subject alignment in functional magnetic resonance imaging (fMRI) studies, they are not sufficient to identify the mapping between voxel-level functional responses representing specific mental contents. Recent work has suggested that statistical learning methods could be used to transform individual brain activity patterns into a common space while preserving representational contents. Here, we propose a flexible method for functional alignment, "neural code converter," which converts one subject's brain activity pattern into another's representing the same content. The neural code converter was designed to learn statistical relationships between fMRI activity patterns of paired subjects obtained while they saw an identical series of stimuli. It predicts the signal intensity of individual voxels of one subject from a pattern of multiple voxels of the other subject. To test this method, we used fMRI activity patterns measured while subjects observed visual images consisting of random and structured patches. We show that fMRI activity patterns for visual images not used for training the converter could be predicted from those of another subject where brain activity was recorded for the same stimuli. This confirms that visual images can be accurately reconstructed from the predicted activity patterns alone. Furthermore, we show that a classifier trained only on predicted fMRI activity patterns could accurately classify measured fMRI activity patterns. These results demonstrate that the neural code converter can translate neural codes between subjects while preserving contents related to visual images. While this method is useful for functional alignment and decoding, it may also provide a basis for brain-to-brain communication using the converted pattern for designing brain stimulation.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملA Critical Visual Analysis of Gender Representation of ELT Materials from a Multimodal Perspective
This content analysis study, employing a multimodal perspective and critical visual analysis, set out to analyze gender representations in Top Notch series, one of the highly used ELT textbooks in Iran. For this purpose, six images were selected from these series and analyzed in terms of ‘representational’, ‘interactive’ and ‘compositional’ modes of meanings. The result indicated that there are...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 113 شماره
صفحات -
تاریخ انتشار 2015